Rambler's Top100

Скачать программы    Все программы автора

2. 5. 3. Численный расчет интегралов

Вычисление определенного интеграла исторически обусловлено задачей расчета площадей различных фигур. Согласно “теореме о среднем” определенный интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке "x i " этого отрезка:

 

 

где a и b - верхний и нижний пределы интегрирования.

Вычисление определенного интеграла по приведенной выше формуле называется численным интегрированием. Численное интегрирование применяют при решении различных задач, например: при определении площадей сложных геометрических фигур, определении работы сил, расчете длины траектории точки и в других случаях, когда подынтегральная функция "f(x)"задана по точкам, имеет сложное аналитическое выражение или ее первообразная не определяется аналитически. Сущность численных методов интегрирования состоит в различной замене (интерполяции) сложной подынтегральной функции на малых отрезках простой функцией, либо в представлении подынтегральной функции в виде сходящегося бесконечного ряда.

Рассмотрим методы численного интегрирования, основанные на интерполяции подынтегральной функции на малых отрезках равной длины различными видами функций: постоянной, линейной, квадратичной и кубической. Формулы численного интегрирования, получаемые при различных интерполяциях подынтегральной функции, называются квадратурными.

 

 

Метод трапеций состоит в том, что кривую f(x) на каждом малом интервале "h" заменяют отрезком прямой, соединяющим точки кривой f(x) на краях этого интервала, при этом M=N - 1. Интеграл вычисляется по формуле:

 

 

Метод Симпсона основан на интерполяции функции на малом отрезке квадратичной параболой, проходящей через крайние и среднюю точки кривой f(x). При этом M=2 * N - 1, а интеграл вычисляется по формуле:

 

 

Метод "трех восьмых" основан на интерполяции функции на малом отрезке кубической параболой, проходящей через крайние и две равноотстоящие по "x" точки кривой f(x). При этом M=3 * N - 1, а интеграл вычисляется по формуле:

 

 

Операторы для вычисления интеграла в этом случае имеют вид:

 

 

Отметим, что методы прямоугольников и трапеций точны для многочленов первой степени, формулы Симпсона и "трех восьмых" - для многочленов третьей степени. Практическое задание N 2. 31

 

1. Рассчитать определенные интегралы с заданной погрешностью двух последовательных приближений от функций: f(x) = sin(x); на интервале [0. . pi], и f(x) = cos(x); на интервале [ - pi/2 . . pi/2]. Сравнить результат с точным значением интеграла от функции.

 

 

При интегрировании может использоваться формула:

 

 

Практическое задание N 2. 32

 

1. Составить процедуры расчета определенных интегралов по формулам Чебышева и Гаусса для заданного числа точек интегрирования. Рассчитать численными методами интеграл от функций: f( x) = sin( x); на интервале [ 0. . pi ] и f( x) = cos( x); на интервале [ - pi/2 . . pi/2 ] при M=6. Сравнить результат с точным значением и вывести значение относительной погрешности. Провести расчет с разбиением интервала N>1.

 

 

3. Рассчитать интегралы от функций f( x) = sin( x)/ x; и f( x) = (1 - cos( x))/ x, применяя разложение тригонометрической функции в ряд (см. стр. ). Рассчитать интегралы на интервале [ pi/2 . . pi ] для числа членов ряда от 1 до 8 и сравнить с данными расчета по формуле Гаусса при M=6.

Вверх

Белорусский рейтинг MyMinsk.com Сайты беларуси Регистр "ЗУБР" Каталог на TIGA.BY, а также  новости, работа, объявления, фото и многое другое Rambler's Top100 Белорусский каталог программ Faststart - рейтинг сайтов, каталог интернет ресурсов, счетчик посещаемос­ти Яндекс.Метрика
Hosted by uCoz